
X-GRAPHS: LANGUAGE AND ALGORITHMS FOR
HETEROGENEOUS GRAPH STREAMS

THE LELAND STANFORD JUNIOR UNIVERSITY

SEPTEMBER 2017

FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

AFRL-RI-RS-TR-2017-172

 UNITED STATES AIR FORCE  ROME, NY 13441 AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose
other than Government procurement does not in any way obligate the U.S. Government. The fact that
the Government formulated or supplied the drawings, specifications, or other data does not license the
holder or any other person or corporation; or convey any rights or permission to manufacture, use, or
sell any patented invention that may relate to them.

This report is the result of contracted fundamental research deemed exempt from public affairs security
and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and AFRL/CA policy
clarification memorandum dated 16 Jan 09. This report is available to the general public, including
foreign nationals. Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TR-2017-172 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE CHIEF ENGINEER:

/ S / / S /
JOHN SPINA MICHAEL J. WESSING
Work Unit Manager Deputy Chief, Information Intelligence

 Systems and Analysis Division
Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

SEP 2017
2. REPORT TYPE

FINAL TECHNICAL REPORT
3. DATES COVERED (From - To)

SEP 2012 – MAR 2017
4. TITLE AND SUBTITLE

X-GRAPHS: LANGUAGE AND ALGORITHMS FOR
HETEROGENEOUS GRAPH STREAMS

5a. CONTRACT NUMBER
FA8750-12-2-0335

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
62702E

6. AUTHOR(S)

Oyekunle Olukotun

5d. PROJECT NUMBER
XDAT

5e. TASK NUMBER
A0

5f. WORK UNIT NUMBER
13

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
The Leland Stanford Junior University
450 Serra Mall
Stanford, CA 94305-2004

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RIEA
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)

AFRL/RI
11. SPONSOR/MONITOR’S REPORT NUMBER

AFRL-RI-RS-TR-2017-172
12. DISTRIBUTION AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited. This report is the result of contracted fundamental research deemed
exempt from public affairs security and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and
AFRL/CA policy clarification memorandum dated 16 Jan 09.
13. SUPPLEMENTARY NOTES

14. ABSTRACT

The overall goal of the X-Graphs project was to develop computational techniques and software tools for graph analytics.
This report describes the two main components of this project. The first component focuses on support for interactive
graph analytics applications on medium to large size graphs. The second component focuses on support for very high
performance graph analytics on large to huge sized graphs. The first component of X-Graphs is SNAP. SNAP provides
interactive analytics on graphs with tens of billions of edges that still fit into a single multi-CPU sever memory. The
second component of X-Graphs is the Delite framework for building compilers for high-performance Domain Specific
Languages (DSLs) that can be used to target heterogeneous architectures (multicore, GPU, cluster, FPGA). These tools
are widely used by academia and industry.

15. SUBJECT TERMS
Data Analytics, Graph Analytics, High-Performance Computing

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

SAR

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
JOHN SPINA

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
(315) 330 4032

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

14

1 SUMMARY 1

2 INTRODUCTION 1

3 METHODS, ASUMPTIONS, AND PROCEDURES 2

Software Abstractions for Graph Analytic Applications 2

High performance Platforms for Graph Processing and Data Analytics 2

4 RESULTS AND ACCOMPLISHMENTS 3

Software Abstractions for Graph Analytic Applications 3

High performance Platforms for Graph Processing and Data Analytics 4

5 CONCLUSIONS 7

6 PUBLICATIONS SUPPORTED BY X-GRAPHS 7

1	

1 SUMMARY
The overall goal of the X-Graphs project was to develop computational techniques and
software tools for graph analytics. This report describes the two main components of this
project. The first component focuses on support for interactive graph analytics
applications on medium to large size graphs. The second component focuses on support
for very high performance graph analytics on large to huge sized graphs. The first
component of X-Graphs is SNAP [1]. SNAP provides interactive analytics on graphs
with tens of billions of edges that still fit into a single multi-CPU sever memory. SNAP
3.0, the most recent release, provides parallel implementations for many key graph
algorithms, conversions between tables and graphs and Python language bindings. SNAP
is widely deployed with over a thousand downloads per month. The second component of
X-Graphs is Delite [18]. Delite is a framework for building compilers for high-
performance Domain Specific Languages (DSLs) that can be used to target
heterogeneous architectures (multicore, GPU, cluster, FPGA). OptiGraph is a graph DSL
that is used to develop graph analytics applications that achieve very high performance
on GPUs with small graphs (millions of edges) and also executes on clusters of CPUs
with huge graphs (tens of billions of edges). The Delite DSL compiler technology is also
capable of targeting the emerging flexible accelerator technology based on FPGAs. Delite
is widely deployed and is being used by industry and academia. Delite generated kernels
form the core of the DeepDive Knowledge Construction System.

2 INTRODUCTION
The goal of the X-Graphs project was to develop computational techniques and software
tools for analyzing massive dynamically changing graphs for new trends, patterns and
relationships. Graphs are a powerful way to represent complex data relationships in a
compact and efficient fashion. Over the course of the project the goals expanded to
encompass the development of software for all components of high-performance data
analytics.

Developing data analytics applications composed of massive graphs creates two problems
that were solved by the X-Graphs project:

• Problem 1: Software abstractions for developing graph analytic applications.
Current graph processing and analysis systems do not work well and are
complicated to use due to complicated APIs. Our solution: Graph Domain
Specific Languages. The objective here is to expedite the implementation of graph
analysis applications via a Graph Domain Specific Language (GDSL). The GDSL
will contain the key components of graph analysis algorithms (abstract data
structure and algorithmic building blocks) as language elements. During this
project, we developed two GDSLs: SNAP.py for fast prototyping of graph
algorithms and OptiGraph for high-performance graph analytics.

• Problem 2: High performance platforms for graph processing. Processing graphs
in-memory of a single multicore machine calls for parallel graph algorithms.

Approved for Public Release; Distribution Unlimited.

2	

Processing graphs on distributed shared-nothing architectures requires effective
graph partitioning and computation. Our Solution: Heterogeneous architecture.
The analyses of large graph streams require large amounts of processing power
and no single architecture will be suitable for all problems. Our GDSL compiler
will allow us to utilize and optimize graph analytics applications for several
different computational architectures and dynamically determine which
architecture is most suitable for the different parts of the application. We will
consider: (1) semi- streaming platforms where the data arrives as a continuous
stream on a single large memory machine, (2) MapReduce/Pregel architecture
where the data is stored in a distributed file system.

3 METHODS, ASUMPTIONS, AND PROCEDURES

 Software Abstractions for Graph Analytic Applications
To simplify the development of graph applications we have focused on the development
of GDSLs. We have developed SNAP (Stanford Network Analysis Platform), a graph
mining and analytics platform, which scales to massive graphs. SNAP is already
available as open source (http://snap.stanford.edu). Graph stream algorithms have been
integrated with SNAP and made available as part of this platform. We also been
developing a GDSL based on the Delite platform for high-performance DSL
development. The Delite platform and associated DSLs are available as open source
(http://stanford-ppl.github.com/Delite)

Our commercialization plan takes advantage of Stanford’s unique connections to Silicon
Valley. All the team members already have very strong connections to a variety of local
companies, from large to small. We will continuously interact with these companies, as
well as with venture capital firms that may fund spin outs. This model has worked very
well for the project PIs in the past (generating companies such as Aster Data and
Google).

High performance Platforms for Graph Processing and Data Analytics

The analyses of “big data” requires large amounts of processing power. It is currently a
significant burden to develop the best implementations of data analysis algorithms for all
the varieties of parallel architecture (multicore, GPU, cluster, FPGA). The traditional
library-based approach to this problem has portability and versatility limitations. Instead,
we will pursue an approach to developing data-analysis applications based on a suite of
domain specific languages (DSLs). We have developed a DSL development framework
called Delite to simplify the process of developing high-performance easy to use DSLs.
The components of the Delite framework are shown in Figure 1. We have used Delite to
develop a suite of DSLs for data analysis (query processing, machine learning, and graph
processing).

Approved for Public Release; Distribution Unlimited.

3	

Figure 1. The Delite DSL Framework.

Delite substantially reduces the burden of developing high-performance DSLs by
providing common reusable components that enable DSLs to quickly and efficiently
target heterogeneous hardware [22].

4 RESULTS AND ACCOMPLISHMENTS

 Software Abstractions for Graph Analytic Applications
Under XDATA, we made our SNAP network analysis software and datasets collection
into a robust, open source platform. They became a central resource for network analysts,
used by thousands every month.

We developed SNAP into a powerful tool for network analysis. We expanded core SNAP
with significant new functionality: built-in operators for relational tables, primitives for
graph creation, high-performance implementation of several key algorithms, and support
for graphs with attributes. We demonstrated that interactive analysis of networks with
billions of edges is practical on modern multi-core large-memory machines. We also
provide in SNAP high-performance implementations of novel methods for networks
analysis: several methods for detection of overlapping communities, personalized
PageRank, node embeddings into a d-dimensional space, counting of temporal motifs,
motif-based node clustering. The following new SNAP capabilities have made it
accessible to a wide range of users, interested in network analysis: support for Python - a
major programming language for data scientists, documentation, tutorials, and unit tests.

The goal of Ringo is Ringo to provide an interactive environment for construction,
analysis, and manipulation of graphs on a single large-memory multicore machine. Ringo
is based on Snap.py and SNAP, and uses Python. Ringo now allows the integration of

Delite
DSL

Framework

Graph
Analysis

Prediction
Recommendation

Data
Transformation

Query Proc.
OptiQL

Graph Alg.
OptiGraph

Machine
Learning
OptiML

Data
Extraction

OptiWrangle

Applications

DSLs

Heterogeneous
Hardware Multicore GPU FPGACluster

Parallel data
Parallel
patterns

Analyses
&	

Transformations

Approved for Public Release; Distribution Unlimited.

4	

graphs and tables in a single system and provides powerful primitives for graph
construction. We received a best demo award at SIGMOD 2015 for the Ringo project.

SNAP network analysis software has been downloaded over 12,000 times in the last 12
months. Its Github repository has 645 stars. The paper on SNAP has 112 citations,
according to Google Scholar. The SNAP dataset collection received around 900,000 Web
hits in the last 12 months. It has been cited 800 times, according to Google Scholar.

OptiGraph is a DSL, developed under the Delite DSL framework, for static graph
analysis based on the Green-Marl DSL [Hong et al. 2012]. OptiGraph enables users to
express graph analysis algorithms using graph-specific abstractions and automatically
obtain efficient parallel execution. OptiGraph defines types for directed and undirected
graphs, nodes, and edges. It allows data to be associated with graph nodes and edges via
node and edge property types and provides three types of collections for node and edge
storage (namely, Set, Sequence, and Order). Furthermore, OptiGraph defines constructs
for Breadth-First Search (BFS) and Depth-First Search (DFS) order graph traversal,
sequential and explicitly parallel iteration, and implicitly parallel in-place reductions and
group assignments. The SNAP library can be used to generate OptiML programs to take
advantage of the high-performance execution options provided by the Delite DSL
framework. The OptiGraph publication is cited over 200 times.

High performance Platforms for Graph Processing and Data Analytics

Under X-Graphs we developed the Delite DSL Framework into a platform for performing
large-scale graph analytics, and added new features to improve performance in this
domain. The OptiGraph DSL was the main vehicle for our exploration of graph analytics.
OptiGraph provides a functional programming model for graph analytics and has
demonstrated much better performance with existing state of the art graph processing
frameworks such as GraphLab and PowerGraph.

Graph Algorithms – We developed optimized implementations of several important
graph algorithms including Betweeness Centrality, Breadth First Search, Page Rank,
Triangle Counting, and Community Detection. We spent considerable effort implanting
the Louvain Method for community detection for visualizing graphs. These graph
algorithms match similar functionality available in SNAP.

Graph Layouts – Besides storing a graph in the well-known compressed sparse row
(CSR) representation, we have investigated new ways of laying out a graph in a shared
memory environment to enable performance benefits on certain algorithms. In graph
algorithms, it is often the case that a join query of some nature is required to provide
rapid lookup of a node in a neighborhood. We have developed a platform for OptiGraph
that parametrically allows graph neighborhoods as well as computation frontiers to be
stored and computed in several different graph data layouts. We have devised a
methodology to decide which algorithmic and dataset dependent factors make one data-
layout better than another. Armed with this methodology, we developed algorithms in the

Approved for Public Release; Distribution Unlimited.

5	

OptiGraph compiler that automatically choose the optimal data-layout.

Graph Scheduling – Delite has historically allowed for only statically scheduled parallel
computations, but due to the load imbalance performance losses that can occur with
graph computations we extended the functionality of our scheduler. First, we are
implementing a dynamic scheduler that will effectively provide work stealing across any
parallel loops in Delite. Extending this idea further, we have added an asynchronous
engine in Delite that allows graph computations to extend across iterations of parallel
computations without any need for costly synchronizations. Several existing graph
processing platforms have shown that doing this provides a performance advantage for
certain graph algorithms.

We made many enhancements to the general Delite infrastructure, both in terms of
making Delite DSLs easier to create and in terms of more powerful optimizations and
improved performance. The Delite compiler initially only had fixed phases, and DSL
authors could only perform optimizations as the IR was being constructed. We have now
added support for DSL authors to define additional IR traversals and transformations.
Using this support, we implemented powerful data structure optimizations that were not
feasible without this facility, including array-of-struct to struct-of-array transformations
and dead field elimination. These optimizations are made possible by introducing a
Record type as a first-class citizen in Delite that both DSL authors and DSL users can
extend to make custom records/structs. These optimizations combined with an improved
parallel loop fusion algorithm and some other existing optimizations have produced order
of magnitude speedups across multiple applications [1].

We developed support in Delite for mapping to non-CPU accelerators such as GPUs. A
key element of this expansion is our C++ code generation coverage of entire applications.
This support has many practical benefits including the ability to generate vectorized code,
generate NUMA-aware code within a single process, allocate very large arrays, target
new accelerators such as the Xeon Phi, and communicate between the CPUs and
accelerators with less overhead (i.e., copying memory in and out of the JVM). To make
this feasible we created our own custom garbage collection mechanism for Delite
applications using a combination of static analysis and dynamic reference counting. Our
high-level analysis in Delite provides all the information required to generate
vectorizable loops. We can communicate this information to the C compilers using the
OpenMP SIMD pragma and let the compiler do the detailed work of code generation for
X86 or Xeon Phi vector units. Support for the SIMD pragma will soon be available for
the GCC and LLVM compilers with the release of OpenMP 4.0.

We have complete support in Delite for multi-dimensional mapping to hierarchical
parallelism in GPUs. This support provides a 28.6x speedup over 1D mappings and 9.6x
speedup over existing 2D mappings. This support makes Delite generated code equal to
or better than hand optimized CUDA code.

Delite is now built around a high-level parallel intermediate language called DMLL the
Delite Multiloop Language (DMLL). DMLL can be used to generate efficient code for

Approved for Public Release; Distribution Unlimited.

6	

various combinations of devices (including C++, CUDA, and OpenCL). DMLL provides
implicitly parallel collection operations but lacks “difficult” features such as higher order
functions, recursion, or an object system. This enables high-level analyses and
transformations, such as sophisticated loop fusion and data access optimizations.

The DMLL has been used to support two new analysis and optimization techniques that
can dramatically improve performance of DSL programs.

• Partitioning Analysis which decides which data structures and parallel operations
to partition across multiple memory regions in a distributed memory or NUMA
architecture.

• Nested pattern transformations that optimize patterns for distributed
heterogeneous architectures to ensure data is consumed and produced

Using DMLL we now support in Delite for NUMA architectures. This support makes it
possible to run machine leaning algorithms 10-50 times faster on a 48 core NUMA
architecture compared to well-known analytic environments like SPARK and
PowerGraph. Using DMLL we improved the OptiGraph implementation of Gibbs
sampling so that it is now 4x better than DimmWitted. Gibbs sampling is the main
inference algorithm used in DeepDive. We integrated the OptiGraph Gibbs sampler into
DeepDive. This involves replacing the hand coded C++ Gibbs sampler (DimmWitted) in
DeepDive with the one generated from OptiGraph DSL code. The result of this
accomplishment is simpler code and much higher performance (4x) than the hand coded
C++ version.

Towards the end of the X-Graphs project we explored using Delite to automatically
generate hardware for DSL applications by adding the compiler analyses and
transformations necessary to create implementations that are far more sophisticated than
traditional C-to-Verilog systems. To more precisely reason about data structure usage, we
added first-class multidimensional arrays to Delite. With this abstraction, we can analyze
data access patterns in a much more straightforward way than mapping everything to flat
arrays. With this new information, we implemented automatic tiling transformations on
nested parallel patterns to greatly improve locality by storing reused data in local
memories. While this transformation is applicable to many hardware architectures, we
found it particularly essential for targeting FPGAs which lack built-in caches and
memory pre-fetchers. We then added code generators from Delite parallel patterns to
HDL modules. In addition to simply mapping each tiled Delite parallel pattern to a
hardware design, we also automatically inserted fine-grained hierarchical pipelining
(metapipelining) across Delite operations and at each nesting level to greatly improve
design throughput.

We developed a design framework using this new Delite representation of hardware
using parameterized templates that captures locality and parallelism information at
multiple levels of nesting. This representation, called Spatial, is designed to be
automatically generated from high-level intermediate languages based on parallel
patterns such as DMLL. We have developed a hybrid area estimation technique which
uses template-level models and design-level artificial neural networks to account for
effects from hardware place-and-route tools, including routing overheads, register and

Approved for Public Release; Distribution Unlimited.

7	

block RAM duplication, and LUT packing. Our runtime estimation accounts for off-chip
memory accesses. We use our estimation capabilities to rapidly explore a large space of
designs across tile sizes, parallelization factors, and optional coarse-grained pipelining,
all at multiple loop levels. We show that estimates average 4.8% error for logic resources,
6.1% error for runtimes, and are 279 to 6533 times faster than a commercial high-level
synthesis tool. We compare the best-performing designs to optimized CPU code running
on a server-grade 6 core processor and show speedups of up to 16.7×.

We have developed the Spatial IR into a new full-fledged performance oriented
programming language called Spatial. Spatial is intended for performance engineers who
care about optimizing the performance of applications by specifying parallelism and
locality. The language is especially valuable for the emerging class of configurable
accelerator architectures such as field programmable gate-arrays (FPGAs) and coarse-
grain reconfigurable architecture (CGRAs) that are being used to accelerate applications
in data analytics and machine learning. The Spatial compiler uses techniques developed
in the Delite compiler to translate DSL applications to hardware using the Chisel HDL.
We have demonstrated much 2–5 times the performance improvement compared to
existing FPGA compilers that convert C to hardware using high-level synthesis. The
growing use of FPGA based accelerators for machine-learning and data processing by
companies such as Microsoft and Amazon suggest that the Spatial compiler technology
will play a key role in the data-analytics accelerator market.

The Delite DSL Framework and associated DSLs (OptiGraph, OptiML, and OptiQL) are
available as open source on GitHub. The Delite technology is broadly used by academia
and industry. Industrial use includes Oracle, Intel and a few start-up companies.

5 CONCLUSIONS

The overall goal of the X-Graphs project was to develop computational techniques and
software tools for graph analytics. We were successful in achieving this goal with the
development of two key software technologies. SNAP a system designed for interactive
analytics on large graphs that fit into the memory of a single server and Delite a DSL
compiler framework for optimizing DSLs to heterogeneous computer architectures.
Taken together these technologies allow a Data Scientist developer to interactively
develop an analytics application using SNAP and then deploy it using Delite with the
goal of achieving much high-performance with much larger dataset sizes. Both SNAP
and Delite are widely-used open source software available on GitHub. The X-Graphs
project has supported the generation of over thirty peer-reviewed technical publications.

6 PUBLICATIONS SUPPORTED BY X-GRAPHS

1. J. Leskovec and R. Sosič. “Snap: A general-purpose network analysis and graph-
mining library.” ACM Transactions on Intelligent Systems and Technology
(TIST), vol. 8, no. 1, July 2016.

Approved for Public Release; Distribution Unlimited.

8	

2. C. R. Aberger, S. Tu, K. Olukotun, and C. Ré, “EmptyHeaded: A Relational
Engine for Graph Processing,” SIGMOD '16: Special Interest Group on
Management of Data, June 2016. (Best of Award)

3. C. De Sa, K. Olukotun, and C. Ré, “Ensuring Rapid Mixing and Low Bias for
Asynchronous Gibbs Sampling,” ICML '16: Proceedings of the 33rd Intl.
Conference on Machine Learning, June 2016. (Best Paper Award)

4. D. Koeplinger, R. Prabhakar, Y. Zhang, C. Delimitrou, C. Kozyrakis, and K.
Olukotun “Automatic Generation of Efficient Accelerators for Reconfigurable
Hardware,” ISCA '16: 43rd International Symposium on Computer Architecture,
June 2016.

5. R. Prabhakar, D. Koeplinger, K. J. Brown, H. Lee, C. De Sa, C. Kozyrakis, and
K. Olukotun, “Generating Configurable Hardware from Parallel Patterns,”
ASPLOS '16: 21st International Conference on Architectural Support for
Programming Languages and Operating Systems, April 2016.

6. K. J. Brown, H. Lee, Tiark Rompf, A. K. Sujeeth, C. De Sa, C. Aberger, and K.
Olukotun, “Have Abstraction and Eat Performance, Too: Optimized
Heterogeneous Computing with Parallel Patterns,” CGO '16: International
Symposium on Code Generation and Optimization, March 2016.

7. T. Oguntebi and K. Olukotun, “GraphOps: A Dataflow Library for Graph
Analytics Acceleration,” Proceedings of the 2016 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, February 21-23, 2016.

8. C. De Sa, C. Zhang, C. Ré, and K. Olukotun, “Taming the Wild: A Unified
Analysis of Hogwild!-Style Algorithms,” NIPS '15: Proceedings of the 28th
Neural Information Processing Systems Conference, December 2015.

9. C. De Sa, C. Zhang, C. Ré, and K. Olukotun, “Rapidly Mixing Gibbs Sampling
for a Class of Factor Graphs Using Hierarchy Width,” NIPS '15: Proceedings of
the 28th Neural Information Processing Systems Conference, December 2015.

10. N. George, H. Lee, D. Novo, M. Owaida, D. Andrews, K. Olukotun and P. Ienne,
“Automatic support for multi-module parallelism from computational patterns,”
FPL ’15: Proceedings of Field Programmable Logic 2015, London, UK, August
31-Sept 4, 2015.

11. C. De Sa, K. Olukotun, and C. Ré, “Global Convergence of Stochastic Gradient
Descent for Some Non-convex Matrix Problems,” ICML '15: Proceedings of the
32nd Intl. Conference on Machine Learning, July 2015.

12. R. Sosic, A. Banerjee and, R. Puttagunta, M, Raison, P. Shah and J. Leskovec,
“Ringo: Interactive Graph Analytics on Big-Memory Machines,” Proceedings of

Approved for Public Release; Distribution Unlimited.

9	

the 2015 ACM International Conference on Management of Data (SIGMOD),
June 2015.

13. T. Rompf, K. J. Brown, H. Lee, A. K. Sujeeth, K. Olukotun, “Go Meta! A Case
for Generative Programming and DSLs in Performance Critical Systems,”
SNAPL 2015: Symposium on Advances in Programming Languages, May 3–4,
2015.

14. L. McAfee and K. Olukotun, “EMEURO: A Framework for Generating Multi-
Purpose Accelerators via Deep Learning,” CGO ’15: International Symposium on
Code Generation and Optimization, San Francisco, CA, Feb. 10, 2015.

15. K. Olukotun and L. Hammond, “Author's retrospective for: Improving the
performance of speculatively parallel applications on the Hydra CMP,” ACM
International Conference on Supercomputing 25th Anniversary Volume, 2014.

16. H. Lee, K. J. Brown, A. K. Sujeeth, T. Rompf and K. Olukotun, “Locality-Aware
Mapping of Nested Parallel Patterns on GPUs,” 47th Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO 2014, Cambridge, United
Kingdom, December 13-17, 2014.

17. N. George, H. Lee, D. Novo, T. Rompf, K. J. Brown, A. K. Sujeeth, M. Odersky,
K. Olukotun and P. Ienne, “Hardware system synthesis from Domain-Specific
Languages,” 4th International Conference on Field Programmable Logic and
Applications, FPL 2014, Munich, Germany, 2-4 September 2014.

18. K. Sujeeth, K. J. Brown, HyoukJoong Lee, Tiark Rompf, Hassan Chafi, Martin
Odersky, and Kunle Olukotun, “Delite: A Compiler Architecture for
Performance-Oriented Embedded Domain-Specific Languages,” TECS'14: ACM
Transactions on Embedded Computing Systems, July 2014.

19. T. Rompf, A. K. Sujeeth, K. J. Brown, H. Lee, H. Chafi and K. Olukotun,
“Surgical precision JIT compilers,” ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI '14, Edinburgh, June
09 - 11, 2014.

20. J. Casper and K. Olukotun, “Hardware acceleration of database operations, “2014
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,
FPGA '14, Monterey, CA, USA, February 26 - 28, 2014

21. S. Hong, S. Salihoglu, J. Widom and K. Olukotun, “Simplifying Scalable Graph
Processing with a Domain-Specific Language,” 12th Annual IEEE/ACM
International Symposium on Code Generation and Optimization, CGO '14,
Orlando, FL, USA, February 15-19, 2014.

Approved for Public Release; Distribution Unlimited.

10	

22. J. Yang, J. McAuley, and J. Leskovec. “Community detection in networks with
node attributes.” 2013 IEEE 13th international conference on Data Mining
(ICDM), December, 2013.

23. S. Hong, N. C. Rodia, K. Olukotun, “On fast parallel detection of strongly
connected components (SCC) in small-world graphs,” Supercomputing,
November 2013.

24. K. Sujeeth, A. Gibbons, K. J. Brown, H. Lee, T. Rompf, M. Odersky, K.
Olukotun, “Forge: generating a high-performance DSL implementation from a
declarative specification,” GPCE'13: 12th International Conference on
Generative Programming: Concepts & Experiences, October 2013.

25. K. Sujeeth, T. Rompf, K. J. Brown, H. Lee, Hassan Chafi, V. Popic, M. Wu, A.
Prokopec, V. Jovanovic, M. Odersky, and K. Olukotun, “Composition and reuse
with compiled domain-specific languages,” ECOOP'13: European Conference on
Object-Oriented Programming, July 2013.

26. T. Rompf, A. K. Sujeeth, N. Amin, K. J. Brown, V. Jovanovic, H. Lee, M.
Jonnalagedda, K. Olukotun, M. Odersky, “Optimizing data structures in high-
level programs: new directions for extensible compilers based on
staging,”POPL'13: 40th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, January 2013.

27. S. Hong, T. Oguntebi, J. Casper, N. Bronson, C. Kozyrakis and K. Olukotun, “A
Case of System-level Hardware/Software Co-design and Co-verification of a
Commodity Multi-Processor System with Custom Hardware,”  CODES+ISSS'12:
17th International Conference on Hardware/Software Codesign and System
Synthesis, Oct 2012.

28. L. McAfee, K. Olukotun, “Utilizing Static Analysis and Code Generation to
Accelerate Neural Networks,” International Conference on Machine Learning
(ICML). June 2012.

29. H. Chafi, A. K. Sujeeth, Z. DeVito, K. Olukotun, “High-Performance Domain-
Specific Languages with Delite,” International Parallel & Distributed Processing
Symposium (IPDPS), Shanghai, China, May 2012.

30. S. Hong, H. Chafi, E. Sedlar, and K. Olukotun, “Green-Marl: A DSL for Easy and
Efficient Graph Analysis,” 17th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS 2012),
March 2012.

Approved for Public Release; Distribution Unlimited.

